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Abstract. The interaction of biological agents within the real world is
based on their abilities and the affordances of the environment. By con-
trast, the classical view of perception considers only sensory features,
as do most object recognition models. Only a few models make use of
the information provided by the integration of sensory information as
well as possible or executed actions. Neither the relations shaping such
an integration nor the methods for using this integrated information in
appropriate representations are yet entirely clear. We propose a prob-
abilistic model integrating the two information sources in one system.
The recognition process is equipped with an utility maximization princi-
ple to obtain optimal interactions with the environment. We compared
an affordance-based system to a non-affordance-based one, both relying
on the same architecture, in a simulated and a real world scenario.

Keywords: affordance, sensorimotor, object recognition, Bayesian in-
ference, information gain

1 Introduction

The ability of humans to reliably recognize objects in the environment is still
a largely unsolved problem for artificial systems. Usually, object recognition
is understood as a classification problem where a fixed mapping from feature
vectors to object classes is learned. This is in line with the classical view of
perception as the input from world to mind and of action as the output from mind
to world [1], which implies a dissociation between the capacities for perception
and action. However, there is strong evidence that object recognition cannot be
understood independently of the interaction of an agent with its environment
[2]. “Active perception” approaches [3–5] take this partially into account, but
actions are not merely means for acquiring new information, they also provide
evidence themselves for the recognition [6]. What an agent perceives is thus also
determined by what it does or what it is able to do [2].
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Research in the direction of affordances by Gibson [7, 8], see [9] for a com-
prehensive overview, also gives evidence that affordances are key ingredients
of the perceptual process. In Gibson’s opinion an agent and its environment
complement each other such that it is necessary to study the agent in its nat-
ural environment rather than in isolation. A variety of studies regarding object
recognition show that the visual information of a manipulable object causes an
activation of representations of actions which can typically be executed on the
object [10–12], cf. Fig. 1. Moreover, Tucker & Ellis [12], for example, found that
the affordance-based compatibility effect in a grasping task is statistically indis-
tinguishable when an object is represented by a visual stimulus or by its written
name. They concluded that on-line visual processing is not necessary to generate
affordance-based compatibility effects. The link between object representations
and actions appears to be critical as the associated actions can be activated in-
dependent of the mode of representation. This gives additional evidence that an
object is not only encoded by the sensor features but also by the (possibly) ap-
plied manipulations [6]. The advantageous interplay between sensory and action
information, which was also recognized by Neisser [13], should be considered in
the recognition process. In cognitive models affordances were related to low-level
processes [14] as well as they were considered to be part of a complete cognitive
model [15, 16]. In robotics the theory of affordances is mostly used for behavior-
based control of robots [17]. The learning of affordances was considered in mainly
two different aspects. On the one hand, learning the consequences of an action
in a given situation [18–21] and on the other hand learning the properties of the
environment which afford a specific behavior [22–24].

The strong interrelation between motor actions and sensory perceptions is
basis for the concept of a sensorimotor representation [2, 25–27]. Similarly to the
affordance point of view the processing stages for sensory and motor information
are not separated. Strictly speaking, this is a precondition for a sensorimotor rep-
resentation which is obtained from alternating sensory perceptions and motor
actions [25, 28]. The approach including the actions in the representation gives
the opportunity to choose the next action such that a specific objective is pur-
sued. Generally, the problem of action selection can be solved in numerous ways,
but as information gathering should be one major purpose of motor actions it is
interesting to consider an information-theoretic utility function. Prior research
in this area often found that the principle of information gain is well suited to
select an appropriate next action. This has been shown by [29] in the context of
decision trees, where information gain was used to decide which attributes are
the most relevant ones. The information gain strategy was able to model human
behavior [30, 31] and could be used to mimic it in the case of human-like ex-
pert systems [32, 33] and saccadic eye movements [34, 35]. In robotics this utility
function was also successfully applied to uncertainty minimization, for example
in robot localization tasks [36, 37].

In this paper, we propose a system for object recognition which incorporates
both the information gain principle from sensorimotor systems and the theo-
retical concept of affordances. Building upon the investigations in [34, 35], we
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Fig. 1: A sequence of interactions with an object (coffee pot) in the real world
is shown. The illustrated affordances of the object are “open it” (middle) and
“hold it on the handle” (right).

developed a sensomotoric probabilistic reasoning system for affordance-based
object recognition. The design of our architecture is motivated by two main
goals: i) to provide a clear relation to Bayesian inference approaches, and ii) to
enable a comparison between the classic sensory approach and the sensorimotor,
affordance-oriented approach within one common probabilistic framework. For
this, we have generalized the original interpretation of sensomotoric features in
terms of feature-action-feature triples as suggested in [34, 35].

The proposed system for object recognition has two main characteristics.
First, actions are an explicit part of the representation. Instead of just using the
sensory information for representing an object class, the system learns the joint
distribution over sensory features and corresponding actions, resulting in a sen-
sorimotor representation of objects. This enables the system to perform actions
that are most appropriate for recognizing a particular type of object. The second
characteristic of the system is its ability to choose actions that are optimal for
discerning different types of objects. This exceeds the typical affordance view
because the system initially does not know what type of object it is interacting
with. The uncertainty about the object class requires the consideration of all
possible object types for the action selection. This selection is based on max-
imizing the expected information gain associated with an action, resulting in
optimal behavior in terms of the quickest possible reduction of uncertainty.

The basic architecture of the system we propose is outlined in Sect. 2. In
Sect. 3, we describe the implementation of the system. Sect. 4 shows the re-
sults of simulated and real world data sets and compares an affordance-based
object recognition approach to a standard sensor-based approach. Furthermore
the adaption-effect of the information gain strategy is quantified. The paper is
concluded with a discussion of the advantages offered by the consideration of
affordances within the system.

2 Object Recognition System

The system described in the following is a generic architecture (see Fig. 2).
In the case of affordance-based object recognition, the recognition loop starts
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out with a particular pose of an object which is perceived by a sensor. It sub-
sequently passes its raw sensor data to the sensory processing module. After
processing, the sensory data becomes part of a new sensorimotor feature, which
is then fed into the probabilistic reasoning module. The processed sensory data
are also used to obtain a set of possible interactions, i.e., the affordances offered
by the sensory data (related to the abilities of the agent). The Bayesian inference
module calculates the new posterior distribution based on a previously-learned
sensorimotor representation. This representation contains the learned percep-
tual consequences of an interaction in a given state for every object class. The
posterior distribution constitutes the current belief of the system. This belief is
used by the information gain strategy to choose an optimal next action from the
set of possible interactions. The selected interaction then also becomes part of
the sensorimotor feature and is subsequently executed by the agent. The whole
process results in a new state, which in turn delivers new raw sensory data to
enter the next cycle of the recognition loop.

object recognition system

environment

knowledge representation

information processing

probabilistic reasoning

state A
state B

sensorimotor
representation

sensorimotor feature

Bayesian
inference

Information
Gain

strategy

interaction
controller

set of possible
interactions

perception perceptioninteraction

interaction
command

interaction

sensory
processing

Fig. 2: Architecture of the object recognition system.
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More formally spoken, the system depends on an agent, which can be con-
trolled such that it perceives information about a specific aspect of the world.
In Fig. 2, the two arrows pointing from the states to the sensory processing
module correspond to the mapping A : U ×X → R, where U is the space of all
interactions which are currently possible, X is the state space, and R is the raw
sensor data space.

The system has no explicit knowledge about the actual state, and the cur-
rently possible interactions U . The possible interactions are of course dependent
on the state but nevertheless both information must be obtained from the sen-
sor data. The sensoric dependency on the state is formalized by the mapping
U : X → P(ΩU ), where ΩU is the set of all possible interactions and P denotes
the power set. Note that U comprises the link from the state to the sensory
processing module and the following link to the set of possible interactions in
Fig. 2, i.e., the perceived affordances. Assuming that the output of the function
U is given, we write U instead of U(x), x ∈ X, for convenience. Considering the
state-agnostic behavior, the influence of the agent can be formally redefined to
Ax : U → R where the index x recalls the dependency on the state

Ax(u) := A(x, u) = r, x ∈ X, u ∈ U(x), r ∈ R. (1)

The only time-dependent variables are the state x and the interaction u.
The raw sensor data r ∈ R is fed into the sensory processing (SP) which

mainly extracts the relevant features belonging to a feature space F , i.e., SP :
R→ F . Subsequently, the quantization operation QS : F → S maps the features
to a specific feature class in the finite and countable space S. The possible
interactions are mapped with QM : ΩU → M to the finite countable set of
interactions M to yield a manageable product space of sensory information and
actions. The results of these quantizations then become part of a sensorimotor
feature (SMF ). The single quantizations are represented in Fig. 2 by the arrows
from the sensory processing module and the interaction command to the first-
order sensorimotor feature which is defined as the triple

SMFi := {si−1,mi−1, si}, (2)

where mi−1 := QM (ui−1) is the interaction between the sensor information si−1

and si at time step ti−1 and ti (see Fig. 3). The whole chain of operations to
obtain the sensor information at a time step ti can be described by

si := (QS ◦ SP ◦Ax)(ui−1). (3)

The knowledge representation is comprised of the learned sensorimotor rep-
resentation (SMR), which is a full joint probability distribution of SMFs and
the classes represented by the discrete random variable Y . Every possible SMF
is generated on a set of known objects in a training phase. This means that,
from every possible state x, the sensory consequence from every possible action
u is perceived, resulting in

SMR := P (SMF, Y ) = P (Si−1,Mi−1, Si, Y ). (4)
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(a) Robotic arm

robotic
arm

interaction interaction

SiMi-1 Mi Si+1Si-1

(b) Robotic arm object interactions

simulated
arm

interaction interaction

SiMi-1 Mi Si+1Si-1

(c) Simulated object interactions

Fig. 3: The utilized robotic arm is shown in (a). Exemplary object interactions for
the real case are shown in (b) and for the simulated case are shown in (c). Here,
si−1 denotes the preceding sensory input, mi−1 denotes the preceding action,
and si denotes the current sensory input.

The probabilistic reasoning module consists of a Bayesian inference approach
accompanied by an information gain strategy. They rely on bottom-up sensory
data and top-down information from the knowledge representation. This design
enables the Bayesian inference system to take into account interactions, thus
improving the posterior distribution over the object classes Y . Furthermore, the
information gain strategy can choose an optimal next interaction for the agent,
thus improving the input of the following Bayesian inference step.

3 Model Implementation

Based on the schematic outline presented above, we applied our system in the
field of object recognition. We consider both the case of a real (see Fig. 3b) and
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a simulated (see Fig. 3c) agent in form of a robotic arm interacting with objects
in 3D space.

3.1 Agent Implementation

We used a discrete set of interactions M of a robotic arm with an object, both
for the real arm and the simulated arm case. Hence, in both cases holds ΩU = M
and the quantization QM is an identity operation.

The following basic learning and recognition principles can be applied to both
of the implemented agents: In the learning phase, features are extracted from the
training data (i.e., images from every reachable state), which corresponds to the
mapping SP introduced above. GIST-features [38, 39] are used to describe the
sensory input which is comprised of holistic views on an object. The quantization
QS is then learned by performing a k-means clustering on the extracted features
(k = 15)1. In order to build the individual SMFs, features are extracted (by
SP ) and the results are assigned to clusters with the aid of the previously defined
mapping QS . These labels are combined with the corresponding interactions in
a set of SMFs. Finally, all generated SMFs are stored in a Laplace-smoothed
SMR.

3.2 Probabilistic Reasoning

The probabilistic reasoning is comprised of a Bayesian inference module in the
form of a dynamic Bayesian network (BN) and a corresponding information gain
strategy. Two of these probabilistic reasoning modules were implemented to ex-
amine the difference between sensor networks, which only take into account sen-
sory information (which also implies that no information gain strategy is used),
and affordance-based networks, which integrate sensory perceptions and interac-
tions. The object recognition in the sense of computer vision then takes place
by classification which is performed by choosing the class with the maximum
posterior probability.

The representative of the sensor networks is Bayesian network 1 (BN1) (see
Fig. 4a), which resembles an extended naive Bayes model by taking into account
the current sensory input si and additionally assuming statistical dependencies
between the preceding and the current sensor information, si−1 and si, resulting
in

P (y|s1:n) = αP (y)P (s1|y)

n∏
i=2

P (si|si−1, y), (5)

where α is a normalizing constant guaranteeing that the probability function
properties are satisfied and s1:n is a short notation for the n-tuple (s1, . . . , sn).

Bayesian network 2 (BN2) (see Fig. 4b) uses the full information of the SMF
and therefore belongs to the affordance-based networks. The assumption that the

1 We use only a small number of clusters in order to limit the number of model
parameters and to prevent overfitting.
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Y

S1 S2 S3 Sn

(a) BN1

Y

S1 S2 S3 Sn

M1 M2 Mn-1

Sn+1

Mn

information gain

(b) BN2

Fig. 4: The dynamic Bayesian sensor network BN1, which is shown in (a), pro-
cesses only sensory information. It represents a naive Bayes approach addition-
ally assuming statistical dependencies between the preceding sensory input Si−1

and the current sensory input Si. BN2, which is shown in (b), is an affordance-
based dynamic Bayesian network. It assumes that the current sensory input Si

statistically depends on the object hypothesis Y , the preceding action Mi−1, and
the preceding sensory input Si−1. Additionally, it is assumed that the preceding
action Mi−1 statistically depends on the preceding sensory input Si−1 as well as
on the object hypothesis Y .

current sensory input si depends on the preceding sensory input si−1 and the
intermediary action mi−1 integrates and sensory perceptions and actions in the
recognition process and permits the application of the information gain strategy
to choose the next optimal interaction. Additionally, it is assumed that the action
mi−1 statistically depends on the preceding sensory input si−1 and the object
hypothesis Y , thus integrating the learned object affordances. The inference can
then be conducted by

P (y|s1:n,m1:n−1) = αP (y)P (s1|y)

n∏
i=2

P (si|si−1,mi−1, y)P (mi−1|si−1, y). (6)
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3.3 Information Gain

The strategy for action selection should satisfy two main properties: (i) The
strategy should adapt itself to the current belief state of the system and (ii) the
strategy should not make decisions in an heuristic fashion but tightly integrated
into the axiomatic framework used for reasoning. The information gain strategy
presented in this paper complies with both of these properties.

The information gain IG of a possible next action mn is defined as the differ-
ence between the current entropyH(Y ) and the conditional entropyH(Y |Sn+1,mn),
i.e.,

IG(mn) := H(Y )−H(Y |Sn+1,mn), (7)

where all probabilities are conditioned by s1:n,m1:n−1. This is equivalent to the
mutual information of Y and (Sn+1,mn) for an arbitrary mn. As the current
entropy H(Y ) is independent of the next action mn the most promising action
m∗ can be calculated by minimizing the expected entropy with respect to Sn+1,
i.e.,

m∗ = arg min
mn

( E
Sn+1

[H(Y |s1:n, Sn+1,m1:n)]). (8)

Because the sensory input sn+1 is not known prior to executing mn, the expected
value over all possible sensory inputs Sn+1 is taken into account. Subsequently,
the so chosen action m∗ ∈ M can be integrated into the sensorimotor feature.
The inverse mapping of QM can then be used to obtain a top-down interaction
command u ∈ U , which is then executed by the agent.

4 Evaluation

The implementation was evaluated on two datasets based on a k-fold cross val-
idation scheme with k = 10. The case of the robotic arm movements can be
seen as a realistic test for robustness with noisy ineractions and sensor data.
This setting yielded a dataset, consisting of 8 object classes, each containing 10
objects from 30 different points of view.

The same setting was simulated resulting in a dataset consisting of 7 object
classes, each containing 10 objects from 30 different points of view.

Figure 5 depicts the results of the robotic arm case. The integration of infor-
mation gain-guided actions in the affordance-based network (BN2 +IG) proves
to be beneficial in terms of recognition performance (see Fig. 5a). The sensor
network BN1 performs worse, which holds true for the recognition performance
as well as for the mean entropy reduction (see Fig. 5b). To particularly illustrate
the effect of the information gain strategy, the affordance-based network per-
forming information gain-guided actions (BN2 +IG) and random actions (BN2
-IG) were compared to each other. The sensorimotor networks with information
gain-guided actions perform better (see Fig. 5a), which is reflected by a steeper
reduction in entropy (see Fig. 5b).

In the simulated arm evaluation (see Fig. 6) the advantage of using affordance-
based networks with information gain-guided actions (BN2 +IG) for recognition
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persists over most of the actions (see Fig. 6a). Only within the last five actions
BN2 -IG is able to reach the same performance as the affordance-driven BN2
+IG. The affordance-agnostic BN1 is able to keep the pace with BN2 -IG within
the first 15 actions but performs worse from this point on. The results in the
performance domain are confirmed by the corresponding evolution of the mean
entropies plotted in Fig. 6b.

The evaluation showed a comparison between affordance-based and affordance-
agnostic object recognition approaches within the same architecture. Further-
more, the optional application of the information gain-strategy showed the effect
of adapting an agent to the given affordances of an object. We found that inte-
grating the information embedded in the affordances of an object is beneficial
for the object recognition process. When our system additionally adapts itself
to the given affordances the recognition process is significantly speeded up and
sightly improved.

5 Conclusion

We have developed an affordance-based sensorimotor object recognition system.
The architecture of this system tightly integrates action, perception, and reason-
ing and can thus make use of the information to be found in objects’ affordances
as well as adapts itself to them. The interaction with an object is driven by
the principle of maximum information gain, where the system selects succes-
sively among the actions possible in each configurational state with the goal of
minimizing the uncertainty about the object it is confronted with. A basic pre-
requisite for the proposed architecture is the description of objects with features
which integrate sensory information as well as actions.

The evaluation of our system showed that the integration of affordance-
information improved the recognition performance. When the system addition-
ally adapts itself to the given object by choosing appropriate actions the per-
formance is further increased. It could be shown that the proposed information
gain strategy is well suited to control such an adaption process.

Currently the affordances are defined by a schematic learning process but our
system design is not confined to such an approach. In the future, an improved
learning process based on a detector for salient affordances will be implemented.
Additionally, our system design also allows for different sensory modalities as
it can process arbitrary sensory inputs. This complies with O’Regan who has a
notion of sensorimotor contingencies which are not confined to particular sensory
modalities [25, 28]. Thus, in future research tactile information should also be
considered as sensory input.
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Fig. 5: Results of the robotic arm evaluation. BN 1 and 2 -IG executed random
movements while BN2 +IG executed information gain-guided movements (GIST
features, 15 clusters, 94 possible relative actions, inhibition of return). Recogni-
tion performance shown in (a) and mean entropy of the posterior distribution
shown in (b) are both plotted against the number of performed interactions.
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Fig. 6: Results of the simulated arm evaluation. BN 1 and 2 -IG executed random
movements, while BN2 +IG executed information gain-guided movements (GIST
features, 15 clusters, 94 possible relative actions, inhibition of return). Recogni-
tion performance shown in (a) and mean entropy of the posterior distribution
shown in (b) are both plotted against the number of performed interactions.
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